Electronics Hub - Automatic Irrigation System on Sensing Soil Moisture Content

Sale
  • Electronics Hub - Automatic Irrigation System on Sensing Soil Moisture Content

Electronics Hub - Automatic Irrigation System on Sensing Soil Moisture Content

Product Description

The project is designed to develop an automatic irrigation system which switches the pump motor ON/OFF on sensing the moisture content of the soil. In the field of agriculture, use of proper method of irrigation is important. The advantage of using this method is to reduce human intervention and still ensure proper irrigation.

The project uses an 8051 series microcontroller which is programmed to receive the input signal of varying moisture condition of the soil through the sensing arrangement. This is achieved by using an op-amp as comparator which acts as interface between the sensing arrangement and the microcontroller.

Once the controller receives this signal, it generates an output that drives a relay for operating the water pump. An LCD display is also interfaced to the microcontroller to display status of the soil and water pump. The sensing arrangement is made by using two stiff metallic rods inserted into the field at a distance. Connections from the metallic rods are interfaced to the control unit.

The concept in future can be enhanced by integrating GSM technology, such that whenever the water pump switches ON/OFF, an SMS is delivered to the concerned person regarding the status of the pump. We can also control the pump through SMS.

Project Highlights

  • Easy to use, Self-explanatory kit.
  • All-inclusive solution kit.
  • Extensive audio-visuals available.
  • Branding-free material.
  • Pre-programmed Microcontroller.
  • Call/mail for Tech Support from 10 am - 7 pm.
  • Can be Customized for Arduino, Raspberry Pi, PIC

Block Diagram

Hardware Requirements

  • 8051 series Microcontroller
  • Op amp
  • LCD
  • Relay
  • Water Pump
  • Voltage Regulator
  • Diodes
  • Capacitors
  • Resistors
  • LED
  • Crystal
  • Transistor

Software Requirements

  • Keil compiler
  • Languages: Embedded C or Assembly

Get 100% Assured Successful Results

A simple and effective plan that assures you the best scores, a plan that gives you time to read, learn, practically experience the whole workings of your project and create a successful unit you can proudly showcase. And the best part is this… even if your own project unit malfunctions... you will still have a ready-made project unit for yourself, just in case there is a last minute issue that you or your teammates could not solve. Confused? Well let me explain.

Plan A: Create A Successful Project Model By Yourself

Plan B: Have A Expertly-Made & Quality-Tested Replica Of Your Project For Assured Results

So here’s how it works.

In my engineering days, we used to struggle replicating a PCB model from our text books with real tools. We had a tough time with the circuits and most of the time - they used to fail. So I wanted to solve this problem not just for myself but for all my fellow students like you. Young, energetic and knowledgeable youth who really want to learn but still cannot afford to fail with the project because it matters and the colleges rarely help us out productively.

So I want to give you a beautiful DIY model of the project that also includes:

  1. A Complete set of tools, circuit diagrams, tested PCD, zero board, audiovisuals and everything else you will need to execute your project to perfection.
  2. A ready-made unit of the project itself, so that you can actually see, test and learn in real-time and if by any chance you could not complete the unit by yourself - can submit this unit for an assured first-class score.

Sounds like a dream? Well, yes it is and here’s how you can benefit from this project not just in your final year but also help you with your interviews and in the future too.

User Reviews

electronicshub

"I live in Hyderabad, a place that is known for engineering colleges. Went with frnd and bought a set from Ameerpet(tht hs rdymade stuff like this) and it failed just b4 viva. Thats when we got this thx to a senior who is sorta like a geek.. and let me tell u.. Its one reason why me and my frnds got thru the final sem. Works great and is useful too later.. "

Ravi Teja
Order No: HYF1290
electronicshub

"A must-buy. It helped me practice in real time and learn how to make a project by looking at an actual workable unit. (fyi - you get a fully built unit and another full set of components to build another by yourself) so it was great value for us. We shared the costs by 3 (our team for the project) but i got to keep my unit as the other two kept the original. Showed it for my on-campus and got thru too becuase it not just looked neat and profesionally bt worked great later. (still have it in my room, now working with GE in Bangalore) "

Anusha
Order No: BLR2933
electronicshub

"We have used it for our institution - it is available in lab and has been good for explaining various models in live during class. Strongly suggest every college dept to have it for labs as it is working well - even with regular use at lab for more than 1 year. Note:We got the unit complementarity before launch in 2014 and have later purchased few batches. The team behind it is professional and know what electronics students need and i am writing this review on their request on 13/05/2016"

Mr. Ramesh Kumar Jha
Order No: BQF3698

Q&A

Q:  Which microcontroller is used in this project?

A:  A 40 pin microcontroller from 8051 family is used in this project.

Q:  What is automatic irrigation system?

A:  Automatic irrigation system automatically switches the pump on/off by sensing the soil moisture condition

Q:  How is the soil moisture sensing taken place?

A:  By using two copper wires(that can be connected to 2 nails) provided with the kit, soil moisture sensing takes place.

Q:  What is the rating of the pump used?

A:  230V mini submersible pump is used in the project.

Q:  What is the role of microcontroller?

A:  Depending on the input from soil moisture sensed, microcontroller switches the pump on/off using relay and also displays the condition on LCD

Q:  Which kind of moisture sensor is using in this project?

A:  The objective behind the project is to understand the technology behind it so it is truly not a commercial product. Therefore we provide neither moisture sensor nor the sprinkler. Two rods inserted on to the soil is used as wet soil sensor while a pump provided forms the water delivery.

Q:  What is the formula for calculating smoothing capacitor value?

A:  There is some approximated formula .Peak to peak ripple voltage = Load current in amps / (2*line frequency in hertz *capacitance in farads). But as rule of thumb for 1 A current 1000uF is best. Thus it is load dependent.

Show More